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In this paper, we construct an integrator that converves volume
in phase space. We compare the resulis obtained using this method
and a symplectic integrator. The results of our experiments do not
reveal any superiority of the symplectic over strictly volume-pre-
serving integrators. We also investigate the effect of numerically
conserving energy in a numerical process by rescaling velocities
to keep energy constant at every step. Our results for Henon-Heiles
problem show that keeping energy constant in this way destroys
ergodicity and forces the solution onto a periodic orbit. © 1995
Academic Press, Inc.

1. INTRODUCTION

The problem of interest is that of a computer solution of a
Hamiltonian dynamical system of the form

% _ NHG, .

ar ity = zg, (1)

where z € R, ¢t is time, H (called the Hamiltonian) is a scalar

I
g O) and the

two identity matrices [ are of equal dimension. We assume that
the function H(z, ) is sufficiently smooth to ensure the existence
of a unique solution. The value v is the number of the degrees
of freedom of the system. This value may sometimes be large,
especially in systems obtained from N-body motion and spatial
discretization of partial differential questions.

Hamiltonian systems have qualitative features that are very
important when they are being integrated. Maost of the conven-
tional numerical integrators such as the classical 4-stage, fourth-
order Runge—Kutta method do not capture these qualitative
features of the systems. Seemingly, all the features exhibited
by the flow of the Hamiltonian system are consequences of
just one property, namely, the property that the flow of the
system is symplectic. The flow is the mapping from a set of
initial values to a set of solution values at some time later. In
differential geometry, the solution of the system would be said
to have symplectic structure.

The construction of symplectic integrators for Hamiltonian
has been the interest of several researchers. Ruth [14] and Feng

function, J is the skew-symmetric matrix (
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(31 were the first, independently, to give published reports on the
possibility of symplectic numerical integraticn of Hamiltonian
systems, Ruth J14] discovered 1-, 2-, and 3-stage methods of
orders =3. Ruth’s work was followed by a considerable re-
search in the area of constructing higher order symplectic integ-
rators [2-4, 12, 15, 17, 18], Forest and Ruth [4] derived a
symmetric explicit 3-stage symplectic integrator of order 4.
Yoshida [18] proved the possibility of constructing symplectic
F-stage partitioned Runge—Kutta method having order 2k +
2 using a composition of symplectic 1-stage method of order 2.
He derived numerically 7- and 15-stage symplectic integrators,
respectively, of orders 6 and 8 using a Lie group approach.
Using the discrete variable approach, several Runge-Kufta—
Nystrom methods of orders at most & some of which are
equivalent to the Yoshida’s methods have been constructed by
Okunbor and Skeel [13].

This paper is not about the derivation of symplectic integ-~
rators, detailed treatment of this are found in [12] and the
references therein. We focus on the anaiysis of existing sym-
plectic integrators. The analyses presented in this paper are
different from those available in the literature [1], So far, the
emphasis has been on the comparison between symplectic integ-
rators and nonsymplectic integrators [12, 15) and the effect of
variable stepsize implementation of symplectic integrators [1].
There are basically two issues that will be presented in this
paper. The first is that of energy conservation. Can the qualita-
tive behavior of symplectic integrators be explained by linear-
ized stability or simply by energy conservation? As reported
by Ge and Marsden [5], symplectic integrators do not conserve
energy. However, the property of being symplectic surpasses
energy conservation. In Section 2, we investigate the effect of
numerically conserving energy. To do this, we rescale velocities
to keep energy conslant at every step. Our results for Hénon—
Heiles problem show that keeping energy constant in this way
destroys ergodicity and forces the solution onto a periodic orbit.

The second issue is that of volume preservation. It is well
known that methods that are symplectic preserve volume in
phase space. The construction of integrators that merely pre-
serve volume in phase space was considered by Suris [16].
This poses the question as to whether or not volume preservation
is all that a numerical integrator requites to represent the qualita-
tive behavior of the flow of the system. We examine this ques-
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tion in somewhat incomplete manner in Section 3. We apply
a merely volume-preserving and a symplectic integrator to a
two degrees-of-freedom Kepler problem and 16 degrees-of-
freedom psendospectral discretization of a sine—Gordon equa-
tion. The results of these experiments do not reveal any superi-
ority of the symplectic over the volume-preserving integrator,

2, CONSERVATION OF ENERGY

The value of the Hamiltonian H(g, p) of a Hamiltonian systern

p(0)

is, H(g(1), p(t)) = H{q(0), p(0)) for all time 1, where (ggg) s

the solution of the system. Usually H corresponds to the energy
of the system. Several numerical integrators for dynamical sys-
tems, not necessarily symplectic, that conserve energy have
been proposed (see [6-8, 11]). Sanz-Sema [15] claims that
the conservation of energy forces the solution orbits of the
Hamiltonian system to be in the (2 — 1)-dimensional surface,
thereby allowing them Lo be free within the surface and, there-
fore, it may not be as important as the property of being sym-
plectic.

In fact, it has been proved by Ge and Marsden [5] for Hamil-
tonian systems having no integrals other than the energy that
if a symplectic integrator always conserves energy, then it must
agree with the map of the exact Hamiltonian system up to a
reparametrization of the time.

A simple-minded way to conserve energy is to rescale veloci-
ties at every step using the formula

- . 0
is a conserved quantity for given initial conditions (Q( )) , that

Pa=5pw 5= V{H,— V@) T(p.),

where T{p,) and V(q,) are, respectively, the kinetic energy and
potential energy at time ¢, and Hj is the initial energy. To find
the effect that rescaling velocities might have on a numerical
integrator, we consider the Hénon—Heiles problem with the
initial condition {g,, qu. p1, p2) = (0, 0.2, 0.4483393, () giving
energy 0.117835. We compute the solutions using the symplec-
tic 3-stage third-order RKN method derived above, a G-sym-
metric 5-stage fourth-order method (acronym, RO) with the
following coefficient was constructed by Okunbor and Skeel
[12]

R 256 24 23 4
c. 48 B 13 18 48
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and the nonsymplectic 3-stage, fourth-order RKN method taken
from [9]

QZ = q:: + %hQH + %hzf(fh),
Q3 = dn + hq:: + %h2f(Q2),
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FIG. 1.

The effect of numerically conserving energy.

qn+1 = qn + hQn + lﬁhzf(qu) + %hlf(Ql)v
Gur1 = G, + 8A(flq.) + (@) + f(03))

(acronym, RKN 4). It can be shown that velocity rescaling
destroys the symplectic property of RQ, Different scaled time
steps (actuai time step is equal to the scaled time step times
the number of stages) but we depict in Fig. | the results for
RKN 4 and RO with and without rescaling velocities using
scaled time step of 1z, From Fig. 1 we see that keeping the
energy constant for the case of RKN 4 destroys the ergodicity
and forces the solution onto a periodic orbit. Therefore, to
conserve energy numerically does not make the results obtained
by nonsymplectic to be comparable to that obtained using a
symplectic integrator. The RO method with velocity rescaling
is not better than the RO method without rescaling,

3. LIOUVILLE VERSUS SYMPLECTIC INTEGRATORS

The property of being symplectic can give rise to many
qualitative characteristics of Hamiltonian systems. One of these
characteristics is the preservation of volume in phase space.
The volume element Il, = dzidz; - - - dz,, of z is related to the
volume element I, = dz,dz;- - dz;, of 7 by

HE = |det SlHZ,
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where § is the Jacobian matrix of the tansformation. Since
STIS = J,then det § = * 1, implying that the volume is invariant
under a symplectic transformation. This result is important
when sampling phase space.

A transformation which conserves volume in phase space
is called a Liouville transformation. We say that a consistent
integrator is Liouville if it gives rise to a Liouville transforma-
tion., Clearly, all symplectic integrators are Liouville, but the
converse is not in general true. In this section we examine
in more detail the usefulness, if any, of the symplectic

(1 + hszDI + hzszg + hdbzalelDl
hBlDl + thDQ + h382a2|DID2

where D) and [}, are the derivatives of f(y) with respect to y
evaluated al ¢ + cip and g + chp + Blasflg + ¢yhp), respee-
tively. To obtain the necessary conditions to be Liouville, we
consider the scalar case, and we get three equations, namely,

b—B + B =0, (2)
by — By + By, = 1), (3)
(b, — By + Bye)ay + (Baby — Biby)c; —¢)) =1 (&)

With Eqs. (2) and (3) satistifed, Eq. (4} becomes
(—Bway + B,by — Biby)Ye, — ) = 0.

To be symplectic, the method must satisfy B.a,, + B:b —
Bib, = 0. However, to be Liouville, this is not necessary if
¢; = ¢;. What this means is that if we choose ¢, 50 that it is
equal to ¢, then the method is Liouville but it may or may not
be symplectic. The method

is Liouville but not symplectic. One can show that this method
is Liouville for systems. This method is of order 2. It has
an accuracy comparable to the Stormer—Verlet method but it
requires twice as much work. In what foliows, we perform
numerical experiments in an attempt to compare symplectic
and Liouville integrators. From the numerical results, there is
no noticeable difference between a symplectic integrator and
the above Liouville method. However, there is a difficnity in
constructing methods that are Liouville without assuming the
symplectic property. The conditions for the Liouville property
are not explicitly expressible in terms of the method parameters.

In our experiments we compare the above Liouville method
and the Stormer—Verlet method. Both methods have the same

7

property over the property of being Liouville. In other words,
what additional gain does one achieve from the symplectic
property. Is the Liouville property all that a numerical inte-
grator needs to represent qualitatively the behavior of the
flow of the system? The motivation for such a consideration
arises from the fact that the conditions for a method to be
Liouville are less restrictive. It is clear that symplectic RKN
methods form a subset of Liouville RKN methods. For
example, consider a general explicit 2-stage RKN method.
The Jacobian matrix § of this method is

Al + h3b|C|D| + h3b2C1D2 + h5b2ﬂ21C1D|Dg>
I+ h281€|D1 + hZBQCZDZ + h432a210|DlD2 ’

P-stability threshold. Therefore, using the same timestep for
both methods does not pose any serious consequences. We
consider two Hamiltonian systems. The first is the 2-body prob-
lem with

1 1 ,
Hag.py==(pi+p}) — ——— 5
(q P) 2 (pl Pz) m ( )
and the initial condition (0.5, 0,0, \/3). The timestep in this
case is 0.0001 and total time of the experiment in terms of
periods is 3000, The global errors in the trajectory against time
for both methods are indicated in Fig. 2. We see from the figure
that both the Liouville and symplectic integrators have linear
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FIG. 2. Two-Body problem: Liouville versus symgplectic,
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growth in error. We did not see any noticeable difference be-
tween both methods for all the time steps that were tried for
this problem.

The second problem is the sine—Gordon equation,

u, + i, +sinu =90,

uix, ) =G,

(6)
u(x,0) = 7 + 0.1 cos(ux),

where p = 27/L and L = 2V/27. The solution is periodic in
x with period L. This is considered to be a more difficult
problem. The paper by Herbst and Ablowitz [10] describes the
application of a pseudospectral method to (6). The Hamiltonian
of the pseudospectral spatial discretization in Fourier space is

(L2)N=1 {1/2)N=-1

H (pipoy + pigeg-d — — cos U, (7

2 =T N ==w

where
(LIN—1

U= (FY4q = 2 ¢ explifx;),
s

Gnp “= G-pns Pan °= Powis Me = 20kIL, x; = LJ/N, and N is
even. The Hamiltonian system is

Canonical method

FIG. 3. Sine—Gordon equation: Liouville versus symplectic.
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g = P, P = —(pig + Fiisin Uj}), k=—iN,..,iN -1,

where

{HION—)

Flvy=— 2 u; exp(—igx;).
N =T

We choose N = 16, Although, several time steps were tried
for this problem, we only present in Fig. 3 the solution obtained
using a time spacing of 0.02 for a total of 5000 steps for the
two methods. Again, there is no remarkable difference between
the two methods. On the basis of these two sets of experiments,
it may be tempting to say that the reason why symplectic
methods perform the way they did might be due to the preserva-
tion of volume in phase space. In any case, more needs to be
done in this regard,
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